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ABSTRACT 

We consider the problem of controlling M/M/c queuelng systems with 

c ^ If    By providing a new definition of the time of transition, we 

enlarge the standard set of decision epochs, and obtain a preferred 

version of the n-period problem in which the times between transitions 

are exponential random variables with constant parameter.    Using this 

new technique, we are able to utilize the Inductive approach in 

a manner characteristic of Inventory theory.    The efficacy of the 

approach Is then demonstrated by successfully finding the form of an 

optimal policy for four quite distinct models that have appeared in 

the literature; namely,  those of   (1)  McGlll,   (11)  Miller-Cramer,   (ill) 

Crablll-Sabetl,    and  (iv)   Low.    Of particular note, our analysis estab- 

lishes that an    (s,S)    or control-limit policy is,  as previously con- 

jectured, optimal for an M/M/c queue with switching costs and removable 

servers.    In addition. It is shown for the Miller-Cramer model    that a 

policy optimal for all sufficiently small discount factors can be obtained 
average cost 

from the usual/functional equation without recourse to further computation. 
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I.    INTRODUCTION 

Recently. Prabhu and Stldham [19] presented an excellent synthesis 

and survey of the literature on the optimal control of queuelng systems. 

There, the authors clearly articulated the need for effecting a unified 

treatment. If not a unified theory, of the optimal control of queuelng 

systems In contrast to the ad hoc manner that has characterized develop- 

ment within the field to date. 

With a view towards the goal of providing a unified treatment, a new 

definition of a transition for exponential or Markovlan queuelng systems 

(that Is, systems with Polsson arrivals and exponential service times) 

is Introduced In order to facilitate the use of the Inductive approach 

on the finite horizon problems In attempting to specify the form of an 

optimal policy.   Quite simply, this new definition merely stipulates that 

the exponential holding times between transitions (which normally entail 

a change In state) have constant parameter.   Thus, the times between trans- 

itions are Independent of not only the control policy employed but also 

the state of the system.   As will be demonstrated, this extraordinarily 

simple device yields both aesthetic and pragmatic benefits. 

As to the aesthetic benefits, we claim that the version of the n- 

perlod problem as defined herein Is Intrinsically more meaningful than 

the n-period problem Induced by the standard definition of a transition 

for It corresponds to a finite horizon problem of some given expected 

duration. 
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2. 

Pragmatically, the new definition enables us to readily obtain many 

new results while simultaneously extracting as a byproduct a number of 

those that have, with considerable Ingenuity and difficulty, been previously 

established.   This Is done by applying the Inductive approach to show that 

various functions of the n-perlod return function are convex and/or monotone. 

In particular, four distinct queuelng models are considered.   First, 

and foremost, is McGlll's [16] hVM/c system with removable servers.   Here 

we established — for the first time — the optimality of an (s,S) or 

control-limit policy for the finite and infinite horizon problems, both 

with and without discounting.    It is shown that if   n <_+»   periods 

remain, there are   i   customers in the system, and the number of servers 

"on" is not between tl»e boundaries    s„ .   and   S„ it   then turn on or n,i n,i 

off just enough servers to reach the boundary; otherwise, do not change 

the number of servers on. 

The various researchers who have investigated the other three models 

we consider    all adopted maximization of the long-run average expected 

reward per unit time as their criterion of optimality.   As in the example 

of the   M/M/c queue with removable servers, we establish the form of an 

optimal policy for the finite and infinite horizon problems, both with 

and without discounting.   Moreover, in all three of the models we establish 

the existence of very strong planning horizons.   These three models re- 

ferred to include:    (1) Cramer's [7] extension of Miller's [18] M/M/c system 

with finite queue capacity in which the customers are distinguished by 

the reward associated with their acceptance into the queue; (11) Crabill 

[5,6] and Sabeti's [20] M/M/l system in which the server can operate at 
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any one of a finite number of service rates; there is a higher cost associated 

with faster service rates and a linear holding cost in addition to a reward 

for service completions, (iii) Low's [13,14] M/M/c finite capacity queue 

in which the decision maker (in effect) dynamically selects the customer 

arrival rate so as to balance the linear holding costs against the higher 

entrance fees that accompany slower arrival rates.   This approach will not 

prove beneficial in all instances; in particular, the approach has not 

proved useful in analyzing Cramer's models   M«   and   M4   [7 , pp. 38-57]. 

In summary, the purpose of this paper is twofold.    First, a redefini- 

tion of transitions is proposed for exponential queueing systems in order 

to bring into being both a more meaningful and a technically more useful 

version of the n-period problem and, simultaneously, in order to achieve 

some small unification in the treatment of exponential queueing systems. 

The second purpose is to establish new results for four specific models 

which occupy a rather prominent position in the field vis-a-vis other 

models to be found in the literature. 

The four models are considered in sections 3 through 6 while nota- 

tion and a more detailed explanation of our new definition of a transition 

are presented in section 2. 
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4. 

Ii.     THE NEW SET OF DECISION EPOCHS 

In pursuing our investigation of the optimal control of exponential 

queueing systems, presentation of our approach is facilitated by tem- 

porarily considering a larger class of problems known as semi-Markov 

decision processes  (SMDP).    We begin by defining a SMOP and use the 

M/M/c queue with removable server to provide a concrete illustration 

of our many definitions. 

A SMDP is specified by five objects:    a state space    S,    an action 

space    A ■ X      A ,    a law of motion    q,    a transition time    t,    and a 
S Co   S 

reward    r.    Whenever (and however)   the system is in state    s    and we 

choose action    a,    three things happen:     (1)  the system moves to a new 

state selected according to the probability distribution    q('|s,a), 

(2)  conditional on the event that the new state is    s',    the length of 

time it takes the system to move to state    s'    is a nonnegative random 

variable with probability distribution    t(. 18,3,3*),    and  (3)  conditional 

on the event that the new state is    s'    and the transition takes    t    time 

units, we receive a reward   r(T,t| 3,3,3')    by time    T <^ t;    typically, 

the reward is composed of a continuous  (as a function of    T)    component 

and a jump which is received either at    T = 0   or at    x * t.    After the 

transition to    s'    occurs,   a new action    a'eA .    is chosen and the 
s' 

process continues in the obvious manner.    The decision epochs are the 
ß 

times of transition. 

In the context of a SMDP, we shall assume that the time between 

transitions is an exponential random variable with parameter    X      ; s, a 

that is, td13,3,8') « 1-e  '  . Moreover, we require that there be 
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if            ■ »*' ■■■»■» i^miiiii»iii»»wini»tww»wwwMiiH'iw^ ; 

i> 

ü 

9 

s 

5. 

a finite upper bound on the set of X's to ensure that only a finite 

number of transitions will occur in a finite amount of time. 

Letting a >_ 0 be the interest rate used for discounting, so that 

a reward r received at time t has present value re" , we define 

V  (s)  to be the total expected a-discounted reward that can be obtained n,ct 

during the last n transitions when starting from state s and follow- 

ing an optimal policy.  (When it is clear that the value of a is fixed, 

we will often delete the a and simply write V (s) rather than V  (s).) n n,a 

Setting V  (s) = 0, it is clear that we have the following recursive 

equations for V  : ^ n,a 

(1) V J..     (s) - max {r  (s,a)  + f *a .(o+*    j'V Js'Mqte1 |s,a) }   , 
n+l,a a      a e    s'a        s'a       n' 

s 

M where 

» t -X    t 
r (s,a) =/{/[/ e"aTdr(T,t|s,3,3')JX  e s'a dt}dq(s,|s,a) . 
a     S 0 0 s'a 

Of course, r (s,a) is the expected a-discounted reward earned during 

one transition when starting from state s and choosing action a. 

If  'V  (s)> possesses a limit for each s as n tends to infinity, 
n,cjt 

then we denote this limit by V (s).  Throughout the remainder of the paper, 

we will refer to any policy TT  whose a-discounted return U  equals 

V  as g-optimal, o^O. If U -V  goes to zero as a goes to zero, 

then IT  is said to be O-optimal> furthermore, if for some a'>0 we have 

U »V  for CKOKO', then w  is termed strongly optimal. Finally, IT 

is said to be average optimal if lim inf U  /n ^ lim sup V  /n = V. 
            „>»       ^      ^ "'0 

lirMlnm  I I  IIM—t 
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As a concrete illustration of the above, consider the M/M/c queueing 

system with removable servers [16]. Customers arrive according to a Poisson 

process with rate X. There are c < » independent exponential servers 

each with rate y, and the queue has an unlimited capacity. The cost 

structure consists of three parts: a holding cost h per customer per 

unit time, a running cost r per server per unit time, and a switching 

'rest K (K~)  that is incurred each time a server is turned on (off). 

Thus, if there are x servers on and it is decided to have y servers 

on, then the switching cost is given by 

K(x,y) 
K (y-x),    if    y ^ x 

bK'(x-y),    if   y ^ x 

n 

o 

C; 

Taking the state of the system to be    (i,x),    where    i   is the number 

of customers in the system and    x    is the number of servers on, we have 

S »  {(i,x)   :   i ■ 0,1,2,...;  x • 0,1,2,...,c},    A {0,1,2,.. .,c}  , 

and 

q((i+l,y)|(i,x),y) - X+(iAy)n 
and     q((i-l,y)|(i,x),y)  ■ JffillL . 

Of course, X..  .  ■ X + pd^y) so that the holding times depend upon 

the state (through i) and the action chosen. Finally, r(T,t|(i,x),y,(i',y)) 

K(x,y) + (hi+ry)T, so that r ((i,x),y) » K(x,y) + (hi+ry)/(o+X+(iAy) u) • a 

The most obvious disadvantage of the problem formulation as given 

above is that the expected length of the n-period problem is not a con- 

stant (for fixed n), but rather a variable that depends heavily upon 

both the control policy implemented and the initial state of the system. 
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(Roughly speaking, more customers In the system and more servers on will 

8* th 
result In a shorter time till the completion of the n   transition.) 

Thus i the n-period problem does not correspond in any strong sense to a 

problem in which one seeks to minimize the expected discounted costs over 

some time horizon of finite (expected) length T. More sharply, we see 

that the n-period problem with the standard formulation is not, as one 

would naturally presume it to be, a continuous time analog of the dis- 

crete time n-period problem where the periods are of constant and equal 

length. 

While the period lengths in a SMDP must necessarily be random 

variables, the problem can be reformulated so that the exponential 

period lengths all have the same parameter, independent of both the 

control policy employed and the initial state. Hence, the aesthetic- 

philosophical need to toore closely approximate a problem of fixed length 

— or at least of fixed expected length — leads us to advocate the 

necessity of a reformulation. 

A second reason prompting us to reformulate the n-period problem 

is the fact that the standard formulation dissipates desirable properties 

— such as monotonicity and concavity — of the return function V  (•) • 
n,a 

In turn, this leads to "foolish decisions being optimal." For instance, 

if K~ > r/X and p/X > h/r in the removable server model, then 

V,  ((1,1)) < V.  ((0,1))  for all a > 0 small, so it is cheaper to 
l,a l,a — 

incur the holding cost simply in order to increase the transition rate 

and hasten the end of the horizon. On the other hand, it is shown in 

section 3 that V (•) is strictly increasing in the number of customers 
a 

in the system,  so that the "improper" standard formulation has lost the 

C 

o 
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monotonicity of    V      ((»»x)).    Similar aberrations can occur In the 
titfX 

policy Itself. 

We now show how to change the set of decision epochs so as to obtain 

constant    x's    while leaving the underlying stochastic process unchanged. 

To begin, assume for simplicity in presentation that   q(s|s,a)   = 0,    and 

define 

A = sup X w    s,a s, a 

Next, redefine the law of motion q as follows: 

qMs'ls,!) 

A4 s.a if s' = s 

s.a 
—j- q(s, |s,a), if    s' f* 

This change in   the   law of notion permits us to redefine the   X's    by 

setting them all equal to   A.     Taken together these changes in 

q    and the    A's    leave the underlying stochastic process unchanged as 

the infinitesimal generator is unchanged and it uniquely determines the 

pure jump Markov process   [ 4 , Ch. 8]. 

Having increased   X to   A ,    the expected length of the time 
8 f 9. 

until a transition occurs has been reduced from    1/X to    1/A.    of 
S ; cl 

course,  the number of transitions until a change of state occurs has 

changed from the constant    1    to a geometric random variable with 

parameter   X      /A.    combining these two facts shows  (again) that the s, a 

expected time t.^ll a change of state occurs is     [X      /A]    /A = i/x 
s,a s,a 

as desired. 

} ! 

m mm tk*k\- •^"-- ■■--- 
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In the context of the M/M/c queue with removable servers, we have 

A - A+cy      and      ^((i.x^y)  - K(x,y)  +  (hi+ry)/(a+A)   , 

0 

so that the recursive equations for the reformulated problem are 

(2)      V A1 ( i.x )  - mln {K(x,y) + -=- [hi + ry + AV ( i+l,y ) 
n+1 y a+A n 

+ w(iAy)Vn(  i-l,y  )   +   (A-A-n(lAy))Vn(l/y)]}   . 

D 

0 

0 

I .» 

As originally conceived, reformulation of this 

model entailed allowing idle servers to complete service on fictitious 

customers at the rate    U   with the proviso that while we say that a 

transition has occurred if an idle server completes service, the state 

of the system does not change.    More generally, one can imagine a bell 

that is triggered by an exponential clock with parameter A .    A transi- 

tion occurs if and only if the bell rings.    Furthermore,  the probability 

that the new state is    s*    given that the system was in state   s    and 

action    a    was chosen is given by    q'fs'jsfa)     and is determined indepen- 

dently of the clock and of the past choices of    s'. 

In closing, we note that if a stationary policy is employed for the 

infinite horizon problem,  then both the new and the standard formulation 

are equivalent as are their functional equations.    Moreover,  for every 

policy — Markovian or not — in the standard formulation,   there corres- 

ponds a policy in the new formulation with the same sample paths 

(although not the same system history)  and the saune return function.    Con- 

sequently,  establishing the existence of a stationary policy that is optimal 

in the new formulation yields the same result for the standard formulation. 

The efficacy of our new formulation is demonstrated in the next 

four sections. 

1 
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(3) 

10. 

III. THE M/M/c QUEUE WITH REMOVABLE SERVERS 

a 

In this section we consider the M/M/c queue with removable servers 

described In section 2.   Using the Inductive approach on the n-perlod 

problem with constant expected time between transitions, we begin by 

showing that the   n   period return function   Vn   (1,x)   as given in (2) 

Is a convex function of   x.   From this, the optimal ity of a control-limit 

policy follows readily. 

Define   J,   (1,y)   by n.a 

Jn,a(1.y) a ^A ^ i + r y + xvn.a(1+1»y) + ^iAy)Vn.a(i"1»y) + w(c-(lAy))Vnta(1.y)} 

so that   (V0t0(H0) 

0 

0 

(4) Vn+l,a(1»x) 3 min {K(x,y) + Jn.a(i»y)}' 

Also, define   yn    (i,x)    to be the optimal decision (number of servers n,a 
on) when   n   periods remain, the discount factor is   a,   and the current 

state is   (i,x).   We say that   y„      is a control-limit policy if there n,a  c *- 
are integers   s„   (1)   and   SM    (i)   with   s„   (i) < S..   (i)   such that n,a n,o n,a      —   n,a 

W1'*) 

sn   (0.       x<.sn    (1) 

sn   {i)<x<Sn   (i) n,a n,a*  ' 

n,a (1).       x^S,,    (i). n,a 

If, in addition,   sM    (1) « i   for each   1,   then we say that   y, 
n»a       - n,a 

a regular control-limit policy. 

Is 

 M      '-^-^ lim mi—iMM -■■... -,^.«.. .*. 
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THEOREM 1;   Given   a>0, n, and 1,   the functions   V,,    (1,.)   and   Jn „(I.*) 

are convex and   y      Is a regular control-limit policy. 

Proof;   Defining   H„(x,y) ■ K(x,y) + J„ ^(1,y),   we note that   H0(',-) 

Is jointly convex as   JQ 0(1.*)   1S linear,   K(',-)    Is jointly convex, 

and the sum of convex functions Is convex.   Hence,   V,    (Itx) ■ m1nw {Hn{x,y)} 

Is a convex function of   x.    (Note that   Hn(-,')   convex In each variable 

Is not sufficient; joint convexity is needed to apply this well known 

theorem on the minimum of a convex function.)   Now assume that   Vn   (1,*) 
n ,ot 

Is convex for each 1. Then J„ (1,*) is convex for each 1 as the 
n ,oi 

sum of convex functions is convex.   Consequently,   H (•,•)   is jointly 

convex so that   Vn+1 ^it*)   is convex for each   1. 

The convexity of   J,   (1,-)   coupled with the essentially linear 
n ,oi 

form of   K(-,-)   yields the existence of   sn a(1) <. Sn a(i).   To see that 

sn+i J1) < i»   simply note that   J     (1,1) i Jn   (1.1+j) + K+jAa+A), 

so that if action   i+j   were optimal from state   (1,1)   we would have 

V^i    (Li) * K+j + J„    (i,i+j) > J„    (1,1) > V^,    (1,1). n+l,ax      ' ü        n,a J/        n,or      ' —   n+l,ax      ' 

Q.E.D. 

Theorem 1 can now be applied to yield the same results for the in- 

finite horizon problem with   a>0. 

THEOREM 2:    For   a>0,   V (1,-)   and   J (i,-)   exist and are convex,   V (•,•) 
  a a a 

is the unique solution to the functional equation of dynamic programming, 

and there is a stationary policy   y    that is   a-optimal.   Moreover, 

y   = <s (1), S (1)>   Is a regular control-limit policy. 

MM .MMHHHHHMta 
■ 
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Proof; To see that V = 11m V   exists, simply note that Vn+1 > Vr 'n+1 - "n 
and that 

Vn n(i.x) < "z    [K+c + K-c + ^^^]/^r 
j < B, < «. 

JB0 n,a a+A 

(Of course, {B^} Is not bounded.) The convexity of V (I,*) follows 

from Theorem 1 and the fact that the limit of convex functions Is convex» 

whereas the uniqueness and the existence of an optimal stationary policy 

Is immediate from Theorem 1 of [11]. These last facts, coupled with the 

convexity of J (I,*), suffice to establish the existence of  <s
a('

i)> 

and <S (1)>. 

Q.E.D. 

Establishing these results for the average cost case Is slightly 

more delicate and. in particular, we will need to assume x<cy least 

V, the optimal return function, be infinite. Before proving that a con- 

trol-limit policy is also optimal for the average cost problem, we need 

the following lemma which asserts that all servers must be on when many 

periods remain, many customers are in the system, and a>0 is small. 

LEMMA 1: There are numbers N <», I«», and a*>0 such that s aO) 
s c 

* 
whenever n > N , 1 > I, and a < a*. 

Proof: To begin, define vn a(i) = min {Vn a(i+l,x) - V a(1,x)}. Letting 
A 

C = yn+l,Q^i+1,x^' we have 

X 

■ ■-—'■'- MMMMIIiMli 
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^d^T {h + xvn^i+1) + ^^)vn.0(i-l) + M(c-(CAl))vntö(1)}5 

so that 

h   .   A 
v^i   (1) >-ir + -T7 m1n ^'„   {i-l).vn   (1).vn   (1+1)}. n+l,or  ' — a+A      a+A n,ox      '    ntor  '    n,or 

Iterating this Inequality gives 

(5) 
h     n^l     A ■J 

Let l/M  be the return associated with choosing action c when 

n periods remain and acting In an optimal fashion thereafter. Then for 

1 > c, 

W(i+1*x) - Wi+1'x> i-tcK+ + ^ +^r{A[vn.o.(1+2^) - W1+2'c)] 

+ ^V(i'0  ■  \,a{Uc)1  + ^)CVn.a(1+U)   -  Vn>a(1.c)]} 

^   cK+^^-^r(c-OK" + y(c-Ovn>a(1) a+A      a+A 

> -c[K++K" +f] +y(c-Ovn>a(1). 

But (5) permits us to choose N , a*, and I so that the right hand 

side of the Inequality above Is strictly positive for all n^N*, IM, 

and   a<a*   whenever ^c.   Hence, we must have   y .,    (1,x) = c = c   for 
'" t\' I ,a 

all   n>.N*,   1>.I   and   a<a*. 

Q.E.D. 

■*•**■*—~-~~-~~ — - — IMMMI *IMII. 
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Note that Equation 5 allows explicit computation of the numbers N*. I> 

and a*. 
return 

Because the optimal/function 1  turns out to be constant, another 

function to play the role of V  Is needed. Toward this end, define 

the functions h and 7 by 

h(1,x) '  11m. {V (1,x) - V (0,0)} 
a+O  a     a 

and 

J(1.y) = -J~ {h1 + ry + Ah(i+1«y) + w(lAy)h(1-l,y) + y(c-(lAy))h(1,y)}. 

THEOREM 3;   If   A<CM,   then   V"   Is constant and finite,    h   exists and Is 

finite,   h(i,-)   and   J(1,')   are convex for each   1,   and there Is a 

stationary regular control-limit policy   y H <(S(1),S(1)>   with   s(1) = c 

for all    1   sufficiently large that is average optimal.    Furthermore,   h 

satisfies the functional equation 

(6) h(i,x) = min {K(x,y) + J(i,y)} -V/A, 
y 

and any stationary policy that selects an action which minimizes the right 

side of (6) for each scS is average optimal. 

Proof:    In view of Lemma 1, the set of policies that is a-optimal for 

a<a*   is finite.   Consequently, there is a sequence   <a >   of discount 

factors   with   a^O   and some control-limit policy   y   that is   a-optimal 

for each   m.   Furthermore, the lower control-limits   <s(i)>   satisfy 

MM MM  -■  in——iülllilf lIMll   III „,1,..iinrrt.U.iHrin.™.^,..*t^»....... HaUtM 



r 

15. 

s(1) » c   for all   1>I.   Thus,   y   satisfies the hypotheses of Corollary 

1 of [11] so that   y   Is average optimal and   V   Is constant and finite. 

The convexity of   h   and   J   follows from the fact that the limit 

of convex functions Is convex while the remainder of the results follow 

from Theorem 4 of [11]. 

Q.E.D. 

In a forthcoming paper [9], It is shown that there is a strongly 

optimal control-limit policy.   The paper will also contain a further 

characterization of the parameters   s„    (i)   and   S„    (i). 

Z 

G 
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IV. OPTIMAL CUSTOMER SELECTION IN AN M/M/c QUEUE 

One of the earliest papers to appear In the literature of the optimal 

dynamic control of queuelng systems was Miller's [17]. He considered 

u an M/M/c system with m customer classes In which each server had rate 

P, customer arrivals had rate x, and p. was the probability that an 

arriving customer was from the k  class. There was a reward r^, 

r1<r2<'«'
<r associated with serving a customer of class k. Decisions 

were made at the times of arrival whence the customer was either accepted 

Into service In order to obtain the reward r. or rejected In order to 

keep available servers free. Pre-emption and backlogglny (queuelng) of 

customers was not allowed, and maximization of the expected reward earned 

per unit time over an Infinite planning horizon was the criterion of opti- 

mallty. Several years later, Cramer [7] Improved upon this model by intro- 

ducing a finite queue capacity and allowing an infinite number of customer 

classes. 

The treatment of the model presented here represents a very slight 

generalization of Cramer's model in that we allow the queue capacity Q 

to be either finite or infinite. In addition, we consider discounting 

and finite horizon problems. 

To begin, let the set £ of customer classes be a measurable sub- 

set of the interval [1,K], and assume that the reward function rrl+l^ 

is a strictly increasing function with r,>0 and rK<». Denote by p 

the measure on I; that is, if I  were countable, then p  is the prob- 

ability that the next arrival will be a customer of class x. Finally 

add an artificial class 0 to I with r =0 and p =0. 

-•■'-■■■■ ■-^"■^lMllll^    ' i     i   i« ii w*ua*]m**min IH'I—a——IMUMiritiMirirfri 11 i   i--' ^"- luuuk^ni.^iu.» 
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G Let the state of the system be   (1.x),   where   x   1s the class of 

the customer seeking admittance and   1   Is the number of customers In the 

system not Including the one seeking admittance, and denote acceptance 

ö by   I   and rejection by   0.    Then In accord with our previous notation 

we have 

S = {(l.xlM-CJ.Z.-'-.c+Q.XEiOm i 

A(1 x) a{0} for   1ac+Q   or   xs0   and   A(1 x) = {0'1}    otherwise. 

q((1.y)|(1.x).0) = q((1+l.y)|(1,x)J) =-^- 

q((1-l,0)i(1.x).0) '*&£)-,     q((1.0)|(i,x).l) » HÜJ+MI. 

q((1.0)|(1.x).0)=^c-yj
Uc)).   and   q((H1>0)| (l.x).l) ' ^^^^i 

We also   ave   A = A + CM,   r((i,x),l) = r    and   r ((1 ,x),0) = 0,    so 
Qt A CX 

that the recursive equations for this model are   (VQ^O) 

(7) W*1'*) = max {rx + Vn,a(i+1); Vn.c*{i)}'   i<c+Q' **0' 

where 

(8) \JV s ^K {% Vn>a(i,y)p(dy) + (iAc)yVn>a(i-l,0) + (c-(lAc)),Vn>cx(i ,0)}. 

Our formulations implicitly assumes that the fee r  is collected 
A 

i|g||j|lg|ggllll|j|lgglj^gll^^ l ,... .... - ...^J.1|-^^^iM^^iii^M 11        itiiiMiiiiiHiiliiiiiiiittiMaiiiiiniiiiiiiii if    iiri   ^   ■■    --■- -.^«ja« 
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G at the time the customer enters the queue rather than at the time he com- 

mences service.   To handle this latter formulation, simply set 

(9) r ((1,x),l) ' {-Sf 
(1+1-C)v0 

v. 

u 

u 

as the customer will not enter service until   (1+1-c)   other customers 

complete service and each of these independent serice times has parameter 

c .   Of course, when   Q=~,   the problem 1s of Interest only If   r    Is 

given by (9).    Because the case   Q=~   1s so different from the case   Q<« 

(©•g-»    Vrt   (^x)   Is concave If   Q<» and convex If   Q=<»   and   0=1),   we 

treat the two cases separately beginning with   Q«». 

By defining   Rn+lfa(1) = Vn>a(1) - V^jl+l),   Equation 7 reveals 

the rather obvious fact that It Is optimal to accept a customer of class 

x   when   n   periods remain, the discount factor is   a>p,   and there are 

already   i   customers in the system if and only if   r     is at least as 

large as   R,    (i).   That is, given   n, a, and i,   there is a minimal re- 
n jot 

ward that will be accepted.    This is to be expected, for all customers 

classes have the same service time distribution.    (See Cramer [7 , p.38-57] 

and Lippman and Ross [12] for two models in which service time depends 

upon the customer class.) 

To garner more information about the behavior of   R     (1),   the mini- n »et 

mal acceptable reward, we need to know more about the behavior of   V„    (i,x), n ,a 

the   n   period a-discounted return function.    It is clear upon reflection 

that   Vn   (i,x)   decreases in   i   and   a   and increases in   n   and   x. 

■ BmMii i ^mv* 
.   . _lf^  Ab, f,.'-, 
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i/ More Important, however, 1s knowledge of 

VaC^V^-Va^'X) 

u 
(and. when   Q • »,   vn   (i) i Vn    (i)-Vn    (i+1)). n.o n.a* n.a 

It will be shown that v a(1»x) Increases in i and 

in n and decrease In a. so that R^ (1) Increases in i and in n n.or 

and decreases in   a.   This knowledge will then be applied in seeking plan- 

ning horizon results. 

The next Theorem states the intuitively appealing idea that we become 

less eager to serve customers as the system fills up. 

THEOREM 4;    Given   a>p, n. and x.    the functions   V   Cl(-.x)   and   V   a(-) 

are concave, so that   R„    (•)    is a nondecreasing function. n.a 

Proof; Let a>0 be given. We claim that H(1) = (iAc)Vn(1-l.O) + 

(c-(i^c))Vn(i,0) Is concave if Vn(',0) is concave. To begin, let 

f(j) " Vn(i+j.O) and take i+2<c. Then 

H(i) - H(i+1) - [H(i+1) - H(i+2)] 

= i f(-l) + (c-i)f(O) - 2[(i+l)f(0) + (c-i-l)f(l)] 

+ [(i+2)f(l) + (c-i-2)f(2)] 

= i{[f(-l)-f(0)] - [f(0)-f(l)]} + (c-i-2){[f(0)-f(l)] 

- [f(l)-f(2)]}. 

and the concavity of f(-) = Vn{i+-,0) implies that each term in braces 

1 
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1s nonpositive.    If   1+1-c,   the right side Increases by   f(0) - f(-l) i 0. 

If   1>cf    then the right side becomes   c{[f(-l)-f(0)] - [f(0)-f{l)]} i ü, 

justifying the claim. 

Next, we claim that concavity of   Vn(-)   implies that of   Vn+1(-,x) 

for each   x.   To see this, fix   x   and let   1     be the smallest   i    for 

which   VM) > r   + Vn(1+1).   To show that   f(1) = vn+1(1,x) - v   lO+Ux) < 0, x  n 

we consider four cases. For 1<i -2 and 1H  we have 
A A 

and 

f(1) ■ Vn(1+1) - Vn(1+2) - (Vn(1+2) - Vn(1+3)) 

f(1) = Vn(1) - Vn(1+1) - (Vn(1+1) - Vn{1+2)) 

: 

u 

respectively, and both are nonpositive by concavity of Vn(')- For 1=1x-l 

and 1=1-2 we have 

O 
and 

'(v^-'x-tw-vv1» 

H\-Z) - Vn(1x-1) - Vn(1x) - [Vn(ix) + rx - Vn(1x)] 

respectively, and both are nonpositive by the definition of 1 . This 

justifies our claim that V +,(«.x) Is concave If V (•) is concave. 

Now V,(i,x) = r or 0 depending upon whether i<c+Q or i = c+Q, 

so V,(*,x) is concave. Coupling this fact with our first claim, we see 

that V,(-) is concave,for the sum of concave functions is concave. 

Assume that V {'.x) is concave for each x. Then, as for the case n=l, 

it follows that V {•) is concave. But now our second claim yields the 

■mm ^ —,.- . 
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desired result; namely, V +,(',x) Is concave for each x. 

A simple consequence of the concavity of V^H Is the fact that 

Q.E.D. 

K   (i+1) > K   O)- 

In addition to the decision maker's diminishing willingness to accept 

customers as the queue builds up (Theorem 4), our next result asserts 

that he becomes more and more selective as the length of the horizon In- 

creases.   (This result also holds for the truly continuous time problem 

(see Theorem 7.3 of [17]).) 

THEOREM 5;    For each   oi>0,   x,   and    1,   v„    (1,x)  1s a nonde- 

creasing function   of   n,   so that   R   a(1)   Is a nondecreaslng function 

of   n. 

Proof;     Setting   v (i) = R     (1),   we desire to show that 
—^^^^^~ n n) ot 

o    (sn) 

o 

«w 

vn(i)ivn.1(i)    . 1=0,1,2,•••,c+Q, 

holdsfor each   n>l.   Since   v^O   and   V0E0,   tue statement   S,    is true. 

Assume   S     is true.   We claim that   Sn   implies   C,,.,   where   C n+1 'n+1 

is defined by 

Vl^1'*) - vn(i,x)    •       a11 i»x' 

But   Cn+1    implies   Sn+1   as is easily seen from (8). 

Thus, it only remains to show that   S     implies   C   ,.   By Theorem 4, 

we need consider only six (Instead of 16) cases.    Fix   x   and define   T 

—   ^-^     ■ ^^ä***~m^~^ .. . :'-^'-^-    n ■i'lilrftliliiiii 
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;; 

t; 

to be the smallest   1   for which   Vn(1) 1 rx + Vn(1+1). 

Case 1:   t+l'*^^» ^+1<V   by   Sn   ,ye have 

vn+l(i»x) a vn<i+l)iVl{1+l) s vn(1,x) 

Case 2:    1+l>in+1.    1<1n+1.   i+]<in 

Vl^^) = ^x = V Vl<1+1) " Vl(1+1) a V1^ " Vn.^1+1) ^ vn(1'x)- 

Case 3:    1i1n+]»    ■'+1<^n 

Vl(1»x) -rx ' Vn(1»x) " Vl(i+1)-Vn(i»x)- 

Case 4:    1<1n+1Al <1+1 

vn+1(i.x) = rx= vn(1.x). 

Case 5:    iiin+1.    1<1
nl

1+1 

vn+l(1'x) ' vn(1)-rx = vn(1'x)- 

Case 6:    iriin+1Mn;    by   Sn   we have 

vn+1(i.x) = v^Div^d) =vn(1.x). 

Q.E.D. 

Monotone behavior of R  (i) as a function of i and n was ex- n »a 
hibited in Theorems 4 and 5, respectively.    It is now shown that the mini- 

mal acceptable reward   Rn   (i)   is a nonincreasing function of   a.   This 

is to be expected, for as   a   Increases the future looks less attractive 

or promising whereas the present is not responsive to changes in   a. 

MUlliWllrirMMW ililliilliiiliiiriiitiill>i*ii»iiiil n i ^^^duMBMiailri ^auimämtmmtmtm 
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THEOREM 6;   For each   n,   x   and   1,   v„   (i.x)   Is a non- ———^^ n »ft 

Increasing function of  a, so that R  (i) Is a nonlncreaslng function 
■iiot 

Of    a. 

Proof;   Writing   (a+A)Rn a(i)   as 

xivn|a(1.y)p(dy) + (iAc)yvn>a(1-l,0) + MCc-(i+l)AC)]vnfa(1.0), 

it is clear that   R
n a(0    is nonincreasing in   a   if for each   x,   v     (i,x) 

is also. 

Next, note   V,    (i.x)   and hence   v,    (i,x)    is constant in   a.   Now 
1 »CX I (01 

assume that   vn    (i,x)    is nonincreasing in   a,    so that the argument 

above shows that   R     (i)    is nonincreasing in   a.   From Theorem 4 we 

know that   v +, C((1.x)   assumes one of the following three values: 

(1' rx + Vn.o,(i+,)---x-Vn,<.<1+2>=Rn.a<i+1)- 

(11) '■x + «n.a(,+,)-Vn,a(1+')'V 

(Hi)        Va{1). 

But each of these three expressions is nonincreasing   in a. 

Q.E.D. 

From the definition of Rn a(i), it is obvious that R  (i) 1 rK, 

while Theorem 5 states that R„ (i) is nondecreasing in n, so that 
n,cx * 

R (i) s lim Rn    (i) 
01 n^>   n'a 

exists.    Now if   r   >R(1)   then   rx ^ Rn    (i)    for all    n   sufficiently 

           --      -    -■ 
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u 

large, or If   rw<R(1)    then   rv<R     (i)   for all   n. 

Furthertriore. Theorems 4 and 5 reveal that   R (1)   Is a nondecreaslng func- 

tion of   1.   Consequently, given   a>0   and   xex;,   there are Integers 

1      and   N    <»   such that a^ a,x 

(10) 

riRnJ1)'     1f     1i1 
n.a a.x 

< Rn   (1).   If   1>1   w V.       n,ax  " a,X 

whenever   n>N   „. ~ a,x 

Thus, as long as   N   v   or more periods remain, a class   x   customer can 

assert, without complete knowledge of   n, that he will be accepted If 

1<1   „   and   rejected If   1>1     . — a,X - a,X 

This naturally raises the question of whether N „ will also suffice 
01 ,x 

for all other customer classes In   x.    If the answer Is affirmative, then 

N        is called an   a-plannlng horizon, and we write   N     Instead of   N 
a.x "■ *  ü oi,X 

to indicate that   N    works for all elements of   x.    If there is an integer 

N*   and an   a*>0   such that   ti*   Is an a-planning horizon for all 0<a<a*, 

then   N*   is called a strong planning horizon. 

While the existence of a-planning horizons is immediate if  7   is 

a finite set, the situation is not so clear if   7   is not finite nor is 

the existence of a strong planning horizon transparent even if   7   is 

finite.    The next several  results reveal that a-planning horizons need 

not exist although weak a-planning horizons exist, that   R (i)    is a con- 

tinuous function of   a,    and that there is a strong planning horizon if 

x   is finite. 

i 
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EXAMPLE 1; An a-plannlng horizon need not exist. 

Let p be Lebesgue measure on xB[1,2], c«l, Q'O, rx«x, A«l, 

P «j, and a rational. 

A straightforward Induction argument shows that V„ „(1) Is rational» n »o 

1»0,1» a rational, and ns0,l,2,'". (Of course VM ^(1»x) Is not 
n »u 

necessarily rational.)   Hence,   RM „(0)   Is rational for all   n   and all 

rational   a.   Consequently, It suffices to show that   R (0)   Is Irrational. 

Let   oi=0   and define   gM   to be the long-run expected return per 

unit time when we accept only those customers whose class Is   IT   or greater. 

Theorem 5 of Llppman and Ross [12] states that   g(')    Is unlmodal while 

Theorem 3 of   [12] establishes the optlmallty of this class of policies. 

For this example, we have 

/   \       2+Tr g{TT) = -r- (4 + 2^ 2(9-^): 1  < IT  < 2. 

Thus     f* .     the optimal value of   *,    is   (9-/iy)/4,    an irrational 

number,   tfut   ** = Ro(0).    This is seen as follows.    Let     V     denote 

the expected n-period return obtained by accepting only custoti;ers of 

class   TT*   or higher.    Then    V   - nAg(Tr*)    is uniformly bounded (see 

Veinott [22, p.  1293]).    Next, Theorem 5 can be employed to show that if 

RQ{0) f 7i*,   then there is an   E > 0   such that    |R   Q(0)-TT*| > e   for 

all   n   sufficiently large, and from this it can then be shown that 

V   „ - nAg(Tr*)    goes to   -». 
n, ü 

Q.E.D. 

MMHMIHM 
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As evidenced In the example, the problem lies In the fact that If 

<r    > Is a strictly Increasing sequence with limit   R (1)   and If   R     (1) 
X_ a n»ot m 

Is strictly Increasing, then   {fl   „ }   must be unbounded.   We say that 
a,xm 

the finite integer   W     Is a weak g-plannlng horizon If whenever   n>W 

a»x and the system 1« In state    (1,x),   the customer Is accepted If   1<j 

and rejected If   M«   +1,   where   1 :x^{0,l ,••• ,c+Q}   Is defined In (10). 

THEOREM 7:    Assume that   7   Is closed,   r   is right-continuous, and let 

OPO   be given.    Then there Is a weak a-planning horizon and   i     is right- 

continuous. 

Proof:    Define   S. = {x:1      =1}   and   x. = inf {x:xeS.},    i=0,l,-" ,c+Q. 
  1 a tX i i 

We intend to show that   W    = max N   „     works. 
a *      a»Xj 

Take x.x'eS., x^x.^x' with x^x. If ru=R (i), then rul<R (1). 11 X     a X      a 

But   X'ES.,    so we must have   r >R (1).    Since   x   is closed,   x-ex. 
i X    a — '  — 

Also, the right-continuity of   r   implies that   r   >R (1).    But too, for x. 

xeSi   we have   ,r
x.l

lVR
C((
i+1 )•    Hence,   x^eS.. 

Q.E.D. 

LEMMA 2: For each i and n, V  (1) is a continuous function of a, 
- n jCt 

so that   R     (i)    is also continuous.    Moreover,    R (i)    is a continuous 

function of   a. 

I Proof:   A straightforward induction argument establishes the continuity 

of   Vn    (i)    and, hence, that of   Rn    (i). 

Pick   a1 >  0   and suppose   R (i)    is not continuous at   a'.   Then — a 

either   R ,(i)>R (i)+e   for all   oca'    or   R ,(i)+E<R (i)    for all    oKa', 

MMBMiifcja.ii.iiiifi.ii-.tj-kmi^a.n    ,     ■ -.,...- 
■■" 
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0 where   e>0   since   R (1)   Is monotone.   In the former case, this yields 

R«   .(1) > R (1) + T> R„   (1) +|  for   oxx'   and   n   large, contradicting 
n,ot a t ~"   n»c» c 

the continuity of   RH   (1)   at   a*.   The latter case Is similar. 

The results of Lemma 2 and Theorems 4, 5, 6 are easily combined to 

yield 

THEOREM 8;    For each   xex   there are integers   1    (=11m+ 1    „) and   M 
- X       ^QT    a,X x 

and a number   ax>0   such that 

LVJ1)    •   ili j   -   n,a X 

(11) rv      ) whenever   n>M     and   0<a<pi . 
A A A 

In particular, there is a strong planning horizon if   x   is finite. 

The analysis of the finite horizon problem, as embodied in Lemma 2 

and Theorem 8, renders the infinite horizon problem, with or without dis- 

countino, practically trivial.    In particular, we note the following con- 

sequences of Lemma 2 and Theorems 4-8'    (1) if the system is in state   (i,x), 

then it is optimal to accept the customer if and only if   r   > R (i), where 
A 01 

a>0 is given. (2) The function V (•) is concave and the return func- — a 

tion   V (-.x)    is concave and uniquely satisfies the functional equation 

of dynamic programming for   oi>0.    (3) Moreover, it is apparent from the 

continuity of   R (1)   that a strongly optimal policy will not, in general, a 

exist if   x   is infinite; however, finiteness of   x   does ensure (via 

Theorem 8) the existence of a strongly optimal policy.    (4) In the average 

;   i 

Q.E.D. 
i 
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u 

cost problem, the functions   h(1,x) = lim. {V (i.x) - V^(O.O))   and 
... 

h(1) r lim. {V (i) - V (0)}   exist, are concave for each fixed   x,   satisfy 

the functional equation 

(12) h(1,x) - max {rx + h(1+l); h(1)} -V/A , 

and any stationary that selects an action maximizing the right side of 

(12) for each   scS   Is average optimal. 

In addition, It Is worth noting that, In the Infinite horizon, the 

model is. In fact, the appropriate truly continuous time model and not 

merely some semi-Markov version.   That this Is so is a result of the fact 

that there are no actions available unless an arrival occurs.   This is 

in contrast to the model of section 3, for there one can turn servers 

on or off at any time; but of course it can be shown that to do so at 

any time other than an arrival or departure Is tuboptimal [23].   On the 

other hand, it should be clear that the model with   n   transitions, as 

embodied   in Equations 7 and 8, is not equivalent to the truly continuous 

time model with time horizon   r/A.   Finally, we note that the functional 

equations (12) and (7) with   n=+"   can be rewritten so that the fictitious 

events are eliminated. 

We conclude by establishing that 0-optimal policies do exist even 

if   J   is infinite and by providing a partial ordering on the (nonempty) 

set of 0-optlmal policies.    Utilizing the characterization inherent in 

this partial ordering, we then show that the maximally accepting policy 

among the set of policies satisfying the functional equation (12) is 

0-optimal.    In particular, if   X   is finite, then this maximally accepting 

.,     ,.    :.    .     .-.-.—J^^^.|t,| IIM—M111 I  1*^ -^■-i -^..fe 



**■      Wlliiippjiipiiii i 

WMnHaMHM 

mumm 

29. 

u 
polity 1s, In fact, strongly optimal, so that the further computation 

always associated with finding strongly optimal (and 0-optlmal) policies 

need not be performed (see Miller and Velnott [18a] for the usual 

algorithm). 

THEOREM 9.   The stationary policy   R,   defined by 

R(1) » 11m+ R (1)  . 

exists and Is 0-optlmal.   Moreover, suppose two stationary policies   ir   and   o 

are 0-optimal and that there Is a state   (r,x')   such that   ir(r,x) = 

1 ^ 0(1',x')   and   IT(S) S o(s)    for   s ^ (i'.x1).   Then for each   a > 0, 

the a-discounted return of   TT   exceeds that of   a.    In particular, if 

there Is a strongly optimal stationary policy, then it can be characterized 

as the maximally accepting policy among the class of stationary O-optimal 

policies. 

Proof:   First, reformuUte the problem so that the state space is finite 

and the action space is uncountable.   This is accomplished by letting the 

state be the number of customers already accepted into the queue and the 

action space be the set of subsets of   J.    Here, each action specifies 

the set of customer classes that will be admitted into the queue.    It is 

evident from Theorem 4 that the action space can be further reduced to 

those subsets of the form    (a,K] n I  or   [a,K] n X. 

The stationary policy    R(i) = lim. R (i)    exists as   J   is closed 

by hypothesis and   R (i)    is a monotone function of   a   by Theorem 6. 

Using Blackwell's representation for the return   V (TI) of a stationary 

•MMi ««•IMMMMMM 
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policy   *   [3a], we have 

V8(ir) • jrj + y^ e(M)  . 

where ß ■ A/(a+A). The vectors x and y are the unique solutions of 

and 

x ■ QX 

(I-Qjy-r^ -x^.   Q>-0 , 

whereas the vector function   e(0.Tr)   Is given by 

MM) - (H(ß.Tr)-H(ff))riT . 

In the above   Q     Is the one-step transition matrix associated with policy 

IT,    Q*   Is the stationary distribution, and   r^i)   is the expected 

immediate reward when action   TT(1)   is chosen while in state   1.    Finally, 

♦ x-,-1 H(e.TT) = [I - ß^-Q;)] 

and 

H   = [I - Q/Q^ 
-1 

Q: 

It Is evident that the convergence of   R    to   R   implies that of 

QR     to   QR,   Qj   to   QjJ,   and    rR     to   rR.    Consequently,    xR  „  xR 

and   yR   -^ yR.   Hence, to show   R   is O-optimal, it suffices to show that 

e(ß,R)  -   e(ß,Rg)   -►O    as     a ^ 0  . 

Because   I-ß(QR -Qj )    and    I-ß(QR-Qj)   are nonsingular for   0 < ß <J , 

^,     i   ..   VI'IMI-...,,   .   ■■■   Ill II II ill I MMBUlitiMiM niiiiiiii.ii  <i   . _. 
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the convergence of   QR ,   Qj!    and   rR    yields   E(ß,R)-e(ß,Rg) ■> 0   as 

a a a 
a -»■ 0. 

To show that the o-discounted return of TT exceeds that of a, 

observe that, by hypothesis 

■V - 11m. {V (I1) - V (I'+l)} . 

so by Theorem 6 we have 

rx. > V1^ " V1'+l)'    a11    a> 0 ' 
Q.E.D. 

Utilizing Theorem 9, we can now present an efficient algorithm for 

computing the 0-optimal policy   R   which is a strongly optimal policy if 

one exists as is true whenever   J     is finite.    First, however, we need 

the following result concerning Markov-decision processes. 

LEMMA 3. Consider a Markov decision process with state space S, action 

space   A,   and bounded reward function.    Denote the ß-discounted optimal 

return function by   V0,    the ß-discounted return function of the stationary 
p 

policy   TT   by   V.    ,   and their difference by   e(ß,').    Then if the stationary 
P ,TT 

policy TT which selects action TT(S) from state s is 1-optimal and if 

e(ß,s) is uniformly bounded, Tr(s) is a maximizer of the function equa- 

tion 

h(s) = max {r(s,a) + / h(s,)dPc ..(a)} - V . 
aeA       S     s,s 

Proof: We have 

■ iii^ [W MI 
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ß VJs) - max {r(s,a) + 0 / VJs^dP, ..(a)} 
0 ß aeA S    ß s,s 

< r(s.Trs) + 0 / v
0,ff(

s,)dP
s,s'^s) + e^'s) 

-  r(s.Trs) + ß / V8{s')dPSiSl(irsl) + c(ß.s)  - 0 /(V3(s,)-Va>7r(s
,))dPSfSl{7rs)   , 

where   e(0ts) 5 Vfl(s)-Vfl w(s).    Since   TT   1sl-optimal,    E(0,S) -»■ 0   as 

1 ß-^l    for each   s.    Furthermore, since   /dPs 51(^5)    is finite    (= 1) 
S 

and   e(0,s)    is uniformly bounded,    /e(0,s')dPe ., (TT.) -* 0   as    0->• 1    for 
S ^ 

each    s.    Therefore, defining   h(s) = Tim [Vo(s)-VQ(0)],   we obtain 
0-1"   e        B 

C 

h(s) < r(s.7Ts) + lim.{0/(Vß(s,)-Ve(O)]dPSjSl{7rs) - (l-0)Vß(O) 

+ c(6,s) + / e(0.s,)dP5 ..U.)} 
S s,s      s 

= KS.TTJ + / hls'jdP^    .(TT ) - V< max {r(s,a) + / h(s')dP.    .(a)} - V s       S s,s     s -aeA s s,s 

= h(s) . 

Q.E.D. 

COROLLARY 1.    The stationary policy    R   is the maximally accepting policy 

that satisfies the functional equation (12);    that is, accepting whenever 

r   + h(i+l) >_ h(i)    (where   h    is any solution of (12)) is 0-optimal and 

strongly optimal if there is a strongly optimal policy. 

Proof:    By Lemma 3, every 0-optimal  policy including   R   satisfies (12), 

whereas Theorem 9 shows that   R   is maximally accepting among the class 

of 0-optimal policies. 

Let   TT   be any policy satisfying the functional and suppose that 

"(i'.x'^l,   yet   R(i,)>rxl;   then   rxl + hfi'+l) = hd"). 

iiiiiiiiiiiin.» naaüminüai, n,      , ttmtm [mi  |tl|i|ttt|,M(ai,|tt||  ^ 
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Since any   h   that satisfies (12) can be written as 

h(1,x) = 11m.[V (l.x)-V (0,0)] + c , 
a-O*   a a 

where c Is some finite constant Independent of 1 and x, It follows 

from (12) that 

rv. '  11m+CV (i')-V (I'+l)] = 11m. R (1') = R(r) 

This contradicts the fact that R(r) > r ,. 

Q.E.D. 

i 

THE CASE Q = « 

When the queue capacity Q Is Infinite, 1t Is Imperative that r be 

given by (9), for otherwise the optimal decision Is always accept the cus- 

tomer requesting admission. Unfortunately, utilizing (9) renders this 
■ 

case Inherently more complicated than the case Q<". For example, the 

function V, ^«.x) 1s not concave, nor Is It convex unless c=l. Con- 

sequently, we limit consideration to the case c=l. And although 

v,, „('.x) and vn „(•) are convex, this is not sufficient to yield the 

analog of Theorem 4. The final result of Theorem 4, however, is rather 

easily obtained as are the results of Theorem 5. But the results of an 

appropriately modified analog of Theorem 6 do  not appear to hold, so 

investigation of the sensitivity of the solution as a function of a   is, 

at present, not possible. 

We begin by noting that the minimal acceptable reward R_ „(1) is 

not vn „(1) but rather vM „(1)/3 , where ß =  u/(a+y). This can be n ,u' n ,u 

.JMlLMiliMMLll^    i       ii.  ■^—..^^-^-..■- ^^^aa^MüMa^m,, ,. ..„^.,...^uu^.^^.^..^. 
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r* 

(13) 
u 

seen from Inspection of the recursive equations   (6 .sl for 1>0 and 0 for 

1-0;   A«x+u) 

Vn+lt0l(1.x) • max {rx31 + V^JI+1;;   V^^l)),   xe^O). 1-0.1.••• 

and 

(14) Vnta(1) -^rU; Vn>0l(1.y)p(dy) + ^PVnfa(i-1.0)}. 

ü 

As In the case   Q<00,    it remains true that the decision maker becomes 

more discriminating both as the horizon lengthens and as the system fills up. 

THEOREM 10;    Given   ^O,   n,   and   x,    the functions   v„ fV(i,x)/0     and 

fl^ a(i)        are both nondecreasing in    1   and nondecreasing in   n. 

Proof:    Since   v1(i,x)/ß1 = rx(l-^)   and   vl(i)/31 = Ml-3)/r p(dy) = 
i+1 — 

v-|(i+l)/2     ,    the result is true for   n=l.   Assume that 

vn(1.x) 1 vn(1+l,x)/3,   all x,   all    1.   Then 

vnO) = ^ {AZvn(i,x)p(dx) + Mö.v^i-l.G)} 

u lÜi{^vn(1+1'x)P(dx) + ^n(1.0)}=lvn(i+l), 
A 

Using   v (1) ± v (i+l)/ß,   we only need consider four cases to complete 

the induction argument. 

Case 1:    Accept at   1,1+1,1+2. 

Vn+iO.x) = r/d-S) + v M+l) < r ß1(l-3) + vn(i+2)/S = vn+1(i+l)/3. 'n+1 'n+1 

iM^MMl MMM aflaltnAL^t^.^.,....^.'....-^.- J.,.-^...^.J..J.^.    .■:...-.,...■    .-   .-..u.. 
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Case 2:   Accept at   1   and   1+1. 

vn+1(1.x) < rV - vn+l(1+l,x)/0. 'n+1 n+1 

35. 

O 

u 

Case 3:   Accept at   1. 

vn+l(1.x) - rx31 < vn(1+l)/6 = vn+1(1+l)/{i. 

Case 4:    Do not accept at   1, 1+1, 1+2. 

vn+l(1'x) s v,,^^^^*1^ ' vn+l(1+l*x)/0" 

The proof that the two functions do not decrease as n Increases 

Is nearly the same as the proof of Theorem 5. 

Q.E.D. 

■ -■ 
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V.      AN M/M/1 QUEUE WITH VARIABLE SERVICE RATE 

The model considered in this section it a generalization of a model 

first considered by Crabill [5,6] and later modified by Sabeti    [20]. 

Here, we have an M/M/1 system with arrival rate   x,   service rate   P, 

and infinite queue capacity.   The decision variable is the exponential 

service rate   y   to be employed, where   y   lies in some subset   A   of 

[0, ü],   7<00.    The cost structure consists of three parts:   a holding 

cost   h   per customer per unit time, a service cost   c     per unit time 

when the service rate is   y,   and a reward of   R>0   that is received when- 

ever a customer completes service.   Of course,   c   is taken to be a strictly 

increasing function with   CQ>.0   and   c_<~.    To ensure the existence of 
y 

an ot-optimal    n   period policy, we assume that   c   is left continuous 

and that   A   is a closed set. 

Here, the state of the system is simply the number of customers in 

the system, so the state space   S   is   {0,1,2,"-}   and the action space 

is the set   A,    previously defined.   Taking   A = A + y",   the law of motion 

q   is given by    (q(-l|0,u) = 0   and   q(0|0,y) = y/A) 

q(i+l|i,y)=^   q(i|i,u)=ÜIÜ   and   q(i-l |i ,y)= J. 

while   r (i,y) = (c   + hi - yR)/(a+A).    This easily leads to the recursive 

equatSws 

(15) Vlfa(i)=^min{cu + hi+Va(i,y)l, ye" 

——   - ■ ■ mi   i. n^—MMfc^^— ^.-■t.'H.J.^t.lJ-,.« 
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37. 

where   (Vn|a(0.w) = Vn|a{0,0), all ueA) 

The model, as incorporated in Equations (15) and (16), generalizes Cra- 

bill's model in that   A   is not required to be a finite set and   R   is 

not required to be   0.   On the other hand, Crabill lets   h^   be the holding 

cost rate where   h.    is an unbounded nondecreasing function, so the case 

hi» h'i    is included by Crabill.   We can, however, relax the assumption 

that   h. s h-i    and   assume only that   h.    is an unbounded nondecreasing 

convex function.    This relaxation is also possible for the model of sec- 

tion 3; and the proofs in both sections 3 and 5 go through without change. 

We shall consider finite and infinite horizon problems with 

and without discounting, whereas Crabill restricted his investigation 

to the class of stationary policies for the infinite horizon average ex- 

pected cost case. 

Sabetti's model assumed   A  finite,    h=0,    and a finite queue capacity, 

again with average cost as the criterion of optimality.    As the changes 

needed to incorporate this model are fairly straightforward, we concen- 

trate solely upon the model as posed in Equations 15 and 16. 

To begin, define   ^* ,.(1)   to be an optimal  service rate when the 

system is in state    i,   n periods remain and the discount factor is   a^O. 

Also, define 

V»(1)-Vn.-(,)-Vn.«(1-"' 

•I 
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Dn>o(i) - min {cp - u(vnta(1) + R))- min {cM - Mv^d-D + R)>. 

As in section IV, the behavior of   u*   will be gleaned from that of these 

three functions. 

A policy possessing the Intuitively appealing property that more 

customers in the system leads to a faster service rate (i.e., uj a(1) 

is nondecreasing as a function of   i) is termed a connected or switch-over 

policy.    Crabill's principal result states that if attention is restricted 

to the class of stationary policies, then there is a switch-over policy 

that is average optimal.    In showing that   V     (•)    is convex, we extend 

this result to the finite horizon problems and to the infinite horizon 

discounted problem, without restriction to the class of stationary policies. 

From this result, we proceed by showing that   u*    (i)   increases with   n n,a 

and decreases with   a   so that there is a strong planning horizon and, 

consequently, a strongly optimal policy if   A   is finite. 

Before presenting our first result, it should be noted that although 

the introduction of the reward   R   introduces the possibility of   \r    (1) n,a 

being negative, a straightforward induction argument establishes the hoped 

for fact that V„ (1) is a nondecreasing function of i; i.e., 
n,a 

n,a 

THEOREM 11:    For each   a>0   and   n,   V     {•)    is convex, so that   v*   (1)   — n,a n,a 

is a nondecreasing function of   i;   that is, u*       is a switch-over policy. 

In addition   V_ „('.M)    is convex for each   ycA. 

MMM 
■""-■■•irini   i   ,.   -.-.--...■ -J'vf.,,!,,!,,    -i      ' _,_    J—^..i   »,. 



mmm 2^2^^^ HP mn   11. I,IIIII,WI»     IJPUIII i i immji  

39, 

* 

Proof;   First fix   a>p   and note that   V^O   Is linear, and assume that 

Vn(')   Is convex.   Then setting   wj;+lt0l(1) a ^^   we bw 

n+r.-w ^.Ui+i - cpi+i + xvn(1+2) + u vn(1+l) - u1+1[vn(1+lHn(1)3, (a+A)vn+1(1+l) >_C 

Similarly, 

(o*A)vn+1{i) 1 c        - c^ i + xvn(Ul) + u vn(1) - u^^v^D-v^l-l)]. 
'i-l       M1-l 

Combining these two Inequalities, we obtain 

Vl(i+1) ■ Vl(i) -xCvn(i+2)-vn(1+l)] + (^i+i)tvn(i+l)-vn
(i)] 

+ Mi.1[vn(1)-vn(1-l)]L0 

since   Mi+1 i7,   u.-j i 0,   and   Vn(-)   Is convex by hypothesis.    This 

completes the Induction argument. 

Next, observe that   Vn+1{-)   can be written as follows: 

I17) W1' -lk{M* 'WW) + " Vn(i) + mJn K-^oJ^W- 

The existence of a    M    in   x   minimizing   c,-M(vn ^(i)+R)   follows from 

c   being left continuous and   x   closed.    Since   V     (•)    is convex, 

v
n a(

i+1) L v
n a^)    so the desired result -- namely   uj+1 a(i

+U L ^jj+i ^(i) 

— follows immediately when this last fact is coupled with   c     strictly 

increasing and (17). 

Q.E.D. 

REMARK.    A closer Inspection of Equation 17 reveals that if   c     is con- 

tinuous, then   y*    (1+1) > v*   (i) even if   c     is not a nondecreasing n,a —   n,a y ' 
function. 

'j-"h""''-- ' ■■■ ■■ ■ -  ■■MMMMM 



|pip^P|^T^^^f^^yil iiwu.iiiiiiw.  mn^^pp i mi 11 miiiiiii III»,!.,!     I.I.IHI.IIP.IIH II»IIIIIIIIIIIIIHHI IIH.H.I .HI TIW-T--.   M     m  *mm 

1 
40. 

0 Using the usual definition of a transition. Prabhu and Stldham have 

obtained Theorem 11    by appending the following assumption:   c     Is Itself 

a convex function of   y. 

THEOREM 12;    For each   QI>0   and   ieS,   v„   (1)   is a nondecreaslng function 

of   n,   so that   w*   (1)   Is also a nondecreaslng function of   n. 
n id 

Proof:   From (17), It Is clear that the desired monotonlclty of   v* a(1) 

Is a simple consequence of   vn+1 o({1) >_ vn a(1).    Since   VQ(1) = 0   and 

7,(1) >. 0,    the result Is true for   n=0.   Assume It true for   n-1;   I.e., 

v     (i) L v
n.i a(

i)-    Utilizing (17), It can easily be seen that 

Writing   u* oi(1) " w(n,1),   we have 

W1) ^cu(n+1.1) " w(n+1.1)[vn(1)+R] - (c^^ - u(n,1-1)[vn(1-l)+R]} 

and 

and thus 

üvn(1) +Dn(1) - [M v^d) +Dn.1(i)] 

i 

>.C7-u(n+1,1)][vn(1)-vn.1(1)] + u(n,1-l)[vn(1-l)-vn_1(1-1)]L0. 

Q.E.D. .  a 

The existence of the limit on n of M* (1) Is immediate from n,a 

Theorem 12, and we would expect this limit to be a-optimal provided that 

lim V     (1)   exists.    Clearly   <V     O^I-i    is a bounded sequence (see 
rv>oo     • • 

i 

1 ; 
■ 
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41. 

proof of Theorem 2 for the necessary technique), but Is 1t monotone? 

Evidently not If   R>0.    Nevertheless, the limit does exist, and we have 

THEOREM 13;   For   a>0,   V (•)   exists, Is convex, and Is the unique solu- 

tion to the functional equation of dynamic programming.   Moreover, the 

stationary policy   u*.   defined by 

M*(1) ■ limp*   (1), 
0 rn»   n,0 

Is a-optlmal and Is a switch-over policy. 

;. 

u 

Proof; If rate v*A    (1) Is employed rather than v*A    (1) when j 
—~— niTj .a j»o 

periods remain,   jsl,2,"«,n,    then an upper bound on   V_ ^(i)   is obtained 

and the first   n   periods contribute no difference in the cost between 

V^O)   and the bound for   V (i),   and we obtain 
n+m n 

A   V n , m-1 
n+m,a'"'      "n,a 

Similarly, we obtain 

(''-V^'^T^yÄ 
vJ ,n 

-^ Mr^ >^ (-ÜR/«) 
j=o' a+A 

v ^ (1) - v„ (i)<;-4rv " [c + (i+n+j)h] 4r^ < *' 'U+A, 

Consequently, <V  (^^Zs-j is a Cauchy sequence for each i and each 

a>0, and thus V (•) exists. 
a 

The remaining facts follow as in the proof of Theorem 2 except for 

the a-optimality of   u*   which (see Equation 17) follows from   w*   (1) 
ot n ,oi 

being a minimizer of   c -M(V„   (i)+R)   and   <vM   (1)>" n    being a non- 3 p       n,a n,a       n-i 

decreasing sequence with limit   v (1).   That   w*   is a switch-over policy 

1s a consequence of Theorem 11. 
Q.E.D. 

I mm* mm 
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u THEOREM 14;   For each   n>l    and   1,   v„   (1)   1s a strictly decreasing 
  _ Of a 

function of   a,   so that   u*    (1)   Is a nonlncreaslng function of   a. 
n f ö 

Proof; The result holds for nBl as v, a{i)  ■ h/(a+A). Assume 1t holds 

for n. Taking a
1
<a2' writing uj+1 c((i) = y(a,l), and employing 

(17), we have, as In the proof of Theorem 12, 

h^w/1) - (v^vi.^) 

50 Vl.a/^-Vl.a^1)^^^^^ Vl.a^). 
Q.E.D. 

In general, the existence of strongly optimal policies necessitates 

a finite state and action space (see Oenardo [8, p. 487]). Con- 

sequently, it came as no surprise that in order to ensure the existence 

of a strong planning horizon in the optimal customer selection model, 

it was necessary to assume x finite (thereby rendering a problem with 

finite state and action space). In the model with variable service rate, 

however, the problem of an infinite state space cannot be assumed away. 

Fortunately, the next Lemma establishes that the model can essentially 

be reduced to one with a finite set of states -- at least for n large 

and a small -- in that v    is the optimal rate for all large states. 

LEMMA 4; If ü   is an Isolated point of A or if {(c_-c )/()7-y):peA-{ir}} 

is bounded, then there are numbers N*«», i*<a> and a*>0 such that 

ÜkÜÜMiiM .   -   —f^.-..,.... — ...-         11 —I- ■ ■ _MMaMMaHiHi 
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»; 
y« ~(^) " ^ whenever n>N*, 1>1*, and 0<OKO*. 

Prouf: We claim that 1 

(18) 
nAl , . vj 

n,o       ' - a+A j.o^a A ' 

This Is seen as follows.   First. 

Vl.a^^-^A^^^.a^^^l.a^^.a^"1^-^  JlKJi)) 'n+1 n»a 

^'^V«'1"1»' 

where the last inequality results from the convexity of   Vn a(').    Iterating 

this Inequality yields (18) as claimed. 

Define   1/     (1)   to be the return of the strategy   cr      = <a      „,(•)> n.a n.a        n,a,m 
with service rates given by 

0n.a.m(i) 
if   m=n 

M*>a(i) .     if   m<n. 

Then 

(19) K   W'vn   tt) > -Tr (t *   nrc +(u-y*   (i))vn ,    (1)}. nia'   '    n,ax      - a+A       w*     (1)    ^ *      n,a     " n-1 ,a     ' 

Let   c = H" - sup iut    (1):n>l, a>0, ieS}.    If   e>0,    then it follows 
and (19) n'a        ~ 

from (18)/that   Vn Ji)-Vn a(1)    is strictly positive for some finite   1. 

1 The bound given In Equation 18 suffices to correct an error in Equation 
31 of reference [11]. 

—-— ^MMMHi^ 
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and n and strictly positive a, a contradiction. 

Consequently, let us suppose that E=0. If M* (1) = M^ some n,1 
n |U 

and   oi>0,   then the desired result follows from Theorems 11, 12, and 14. 

Therefore, assume that   ü   Is not an Isolated point of   A   and that there 

is a set   (P*   (1)}   with supremum   ü   and   ü   not in this set.    By Theorems 

11, 12, and 14, there is a sequence n.cxn   n (1 )>    from this set with 

0<Vl<an'    Vl>1n   and lim1t   ^    Since   (V     (1 rCü-)/(M"y^ ^n^ n,a * n  M      n 

is bounded below by hypothesis and our bound on <v -i „ (i )> is non- 

decreasing with limit +» by (18), (19) reveals that Vn „ (in)-^ „ (1 ) 

is strictly positive for some finite n. 

Q.E.D. 

Theorems 11, 12, 14 and Lemma 4 yield the following strong planning 

horizon theorem where iJ* is defined by 

M*(i) = lim ii*(i) . 

THEOREM 15: If A is finite, then there is an H*<°°   and a* 0 such 

that for each i, 

u*   (i) = u*(i), whenever n^II* and 0<a^a*. 

In particular, y* is strongly optimal. 

In Example 2 below, it is demonstrated that a strong planning horizon 

may exist even if A is infinite, but there is no reason even to believe 

that a strongly optimal policy will always exist. However, we make the 

following conjecture: if c has a bounded derivative, then the sta- 

tionary policy P* defined by u*(i) = lim+ u (i) is 0-optimal. 
a>0  Qt 
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EXAMPLE 2;    A strong planning horizon may exist even If   A   Is Infinite. 

Suppose  A ■ [0,u]   and   c   Is linear; that is, tt 

c   = Ku,    K > 0 . 
u 

Then   M*   (1)=0   or   y   depending whether   K>vn ,    {1)+R   or K<vn T „(i)+R. n, —' n^ijoi n—i»Qt 

Let   H{1) a 11m+ vn a(1)+R   and define   u*   by 
(**0       * 
rv»» 

i 0, if K>H(i) 
p*(i) = > _ 

[ u, if K<H(1). 

S 

• 

Then it is clear from Theorems 11, 12, and 14 that y* is strongly optimal 

and that there is a strong planning horizon. (Notice that the "bang-bang" 

form of M* does not depend upon linearity in the holding cost function.) 

Q.E.D. 

THEOREM 16: If A<M and if either w is an isolated point of A or 

{c_-c )/('M-U);PCA~{Ü}} is a bounded set, then h, defined by h(i) = 

lim, [V (i)-V (0)], is convex and satisfies the functional equation 

(20)     h(i) = r {h-i+Ah(i+l)+Mh(i) + min[c -w(h(i)-h(i-l)+R)]} - V/A , 
ueA 

^.nd any stationary policy that selects a rate which minimizes the right 

side of (20) for each   i    is average optimal.    In particular,    u*   is 

average optimal. 

Proof:    By Lemma 4 and    \<ü,    the assumptions of Theorem 4 of [11]   are 

satisfied so that   h(-)   exists, satisfies (20), and any stationary policy 

that selects a rate which minimizes the right side of (20) is average 

optimal, while convexity follows from Theorem 13.    Left continuity of 

""•" ■  '      ■"  - ■        -      --in  '       "Ml^ll'll "imüM-Mh »rf.-^,.':.,  ........^ -■.1,iil,.M|,|in||   ,„       ||,|,|^! 
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. *, 

c  and M*(1)  nonincreasing in a yield 

min {c -M(R+h(i)-h(i-l))}= lim. min (c -p[R+V (i)-V (i-1)]}. 

lim. {c *m-w*(1)[R+V (1)-V (i-1)]} 
of*0    ax 

CM*(i)-P*(i)[R+h(i)-h(i-l)], 

so that u* is, indeed, average optimal. 

46. 

Q.E.D. 

In the model of optimal customer selection, we were able to charact- 

erize a strongly optimal policy (if it exists) as the maximally accepting 

policy in the class of 0-optimal pclicies.    For the variable service model 

the characterization asserts that, given a choice, slower rates are preferred. 

THEOREM 17: Suppose two stationary policies TT and a are 0-optimal 

and that ^(i) = 3(1) for i7i' and ^(i1) = (j<y = o(i'). Then for 

each    i'O,    the a-discounted cost of   IT    is less than that of   a. 

Proof:    By hypothesis,    |JM~    and 

lim+ [c   - P(R+v (i1))] = lim+ [c    - y(R+v (i1))], 
a-vU 

so that   v (i1)   strictly decreasing in   a   yields the desired result. 

Q.E.D. 

In conclusion, we note a rather curious phenomenon.    From (18) it 

is apparent that   v (i) ^ hi[A/(a+A)]1/Ai    so that 

—i—Mlfl    I ■    »11 ■■    - —J—M^—■ -  — - mm. mtii i    ■ ..„..^., 
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h(1) • IK [Va(1)-Va!0)] ■ 11m+   l^i)>J ^i-J^T11 ■ 
ot+0 (**0   j=l J=l 

Thus, although the reward function Is linearly bounded, the relative 

values h(') are quadratic. 
I 
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VI.     AN M/M/c WITH VARIABLE ARRIVAL RATE 

Closely related to Crabill's M/M/l model with variable service rate 

is Low's   [13,14] M/M/c model with variable arrival rate.    In contrast to 

Crabill's model,  control of the system is effected by increasing or 

decreasing the price charged for the facility's service thereby encourag- 

ing or discouraging the arrival of customers.    This scenario is, of course, 

equivalent to the decision maker choosing an arrival rate    X    which in 

1 turn detenrdnes the price    p      that a customer is charged for admission 
A 

to  the queue. 

I 
We assume that the arrival rate lies in some closed subset A of 

I 
[0,X], X < «o, each of the c < <» exponential servers has rate y, and 

j 
the queue capacity Q is allowed to be either finite or infinite. 

The state of the system is merely the number of customers in the 

] 
system, and the cost structure consists of two parts: a holding cost 

h. per unit time that the system is in state i and a reward or entrance 

i 
fee    p      received whenever a customer enters  the system at a point in time 

when the arrival rate is    X.    As  is reasonable from economic considera- 

tions,    p      is taken to be nonincreasing whereas    h.     is nondecreasing. 

In  addition,    p      is assumed to be  right-continuous,  with    PT
-:! 0    an^ 

A X 

pÄ < ".  Unlike Low, we must assume that h.  is a convex function of i. 

Setting A = X+yc, we obtain the recursive equations  (V = 0) 

<21)   v„xi  (i) = -T7 min f-^P, + v  (i»X)}, i = 0,1 c+Q , 
n+l,a    a+A . .    X   n,a XeA 

wnere 

(22)   V  (i,X) = h. + XV  (i+1) + u(iAc)V  (i-1) + (A-X-yUAC))V  (i) 
n,a       i    n,a n,a n,a 

..,;-J.^M. ,i ^..miri'   ...,-„,. „„MiMmm-     Tn-i^-m^.iai,f.,..,^m,. ■■-—   '---■-'■'niinni n 
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U 
As before/ we begin by defining    X      (i)    to be an optimal arrival 

n^a 

rate when the system is in state 1,  n periods remaln.and the discount 

factor is a > 0. Also define 

U v  (1) - V  (i) - V  (i-1) . 
n,a     n,a     n,a 

O 

Clearly, v  (i) > 0. 
n,a   — 

Low's principal thrust was the development of an efficient algorithm 

for the average cost case from which optimality of a monotone stationary 

policy was established. We now extend his monotonicity result to the 

finite and infinite horizon discounted problem. 

Z 

THEOREM 18. For each n and a > 0, V  (•)  is convex, so that ■ —    n,a 

X  (i)  is a nonincreasing function of i. 
n,a 

Proof: Convexity of V,   follows from that of h.. Assume V    is 
  1,QI i n,a 

convex.  Then using convexity of V  and the method of Theorem 11, we 
n 

obtain, after some simplification, 

(a+A)lvn+1(i+l)-vn+1/(i)]/u 

> c[v (i+l)-v (i)] - {((i+l)Ac)v (i+1) - 2(iAc)v (i) 
—   n     n n n 

+ ({i-l)Ac)v (i-1)} . 
n 

The nonnegativity of this last expression is shown by considering the 

three cases i+l<c, i = c, and i-1 * c separately. In each case, 

the desired result follows from convexity of V . This completes the 

induction argument. 
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Rewriting   (21)  as 

(23)    V ..     (i)  - -—{h.+AV,, M(i)-y (iAc)VM n(i)   + min [\[vn ^(i+D-p. ] }}   , 
n+lfOt ot+A    in(o n»oi .. n,a A 

we see that right-continuity of   p.     together with    A    closed, 

v      (i+1)   > 0,    and   p.    nonincreasing guarantees the existence of a n»o — A 

minimizing    X,    whereas    X    .     (i)    nonincreasing in    i    is obtained 

from    v      (i)    nondecreasing in    i. 
n«a 

Q.E.D. 

REMARK. Equation 23 reveals that if p,  is continuous, then X ^.     (i)  is 
    ^ eX n+l,a 

nonincreasing in i whether or not p.  is nonincreasing. 

Letting A play the role of y in the proofs of Theorems 12 and 14 

and letting 2L -  inf{X:XeA} play the role of y in the proof of Lemma 4, 

the proofs of Theorems 12, 13, 14, 15 and Lemma 4 suffice, with but 

minimal changes, to establish the obvious analogs of Theorems 12, 13, 14, 

15 and  Lemma 4 for the variable arrival rate model. Assuming that 

^ < cy rather than X < cy if Q o «,  the analog of Theorem 16 holds. 

Finally, the partial ordering on the set of 0-optimal stationary policies 

(cf. Theorems 10 and 17) relates that faster arrival rates are preferred. 

n iimmtmm^^mt, 
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